Calculating Actuarial Present Value and Variance for Whole Life Insurance

  • Thread starter Thread starter Jrb599
  • Start date Start date
  • Tags Tags
    Mathematics
Jrb599
Messages
24
Reaction score
0

Homework Statement


If delta(t) = 0.2/(1+0.05*t) and s(x)= 1-(x/100) for 0<x<100, calclulate
a. For a whole life insurance issued at age x, the actuarial present value and the variance of the present value of the benefits


Homework Equations



Present Value = Int(exp(-delta*t)) *Mu(t+x)*tPx

The Attempt at a Solution



I try to integrate the exponentional because the Mu and P can be pulled out but get a weird situation. Any thoughts or help?
 
Physics news on Phys.org
What's tPx?
 
s(x+t)/s(x)

For the Mu(x+t)*tPx you should get 1/(100-x)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top