jdstokes
- 520
- 1
Homework Statement
I'm trying to understand the solution to this integral
\int_{\mathbb{R}^3} \frac{e^{i \mathbf{x} \cdot \mathbf{a}}}{\sqrt{r^2+1}}d\mathbf{x}
where d\mathbf{x} =dxdydz, r = \sqrt{x^2+y^2+z^2},\mathbf{a}\in \mathbb{R}^3
The Attempt at a Solution
\int_{\mathbb{R}^3} \frac{e^{i \mathbf{x} \cdot \mathbf{a}}}{\sqrt{r^2+1}}d\mathbf{x} = 2\pi \int_0^{\infty}\frac{1}{\sqrt{r^2 +1}}\frac{e^{iua}-e^{-iua}}{iua}u^2du
Could anyone please explain to me how this first step was obtained?
Last edited: