Entropy-any direction would be appreciated

  • Thread starter Thread starter hils0005
  • Start date Start date
  • Tags Tags
    Direction
AI Thread Summary
The discussion focuses on calculating the final temperature of a system consisting of a cup made of aluminum, water, and ice. Participants emphasize the need to apply heat flow equations rather than entropy calculations for this problem. Key concepts include the specific heats of aluminum, water, and ice, as well as the heat of fusion for ice. The conversion between Joules and calories is clarified, noting that 1 Cal is equivalent to 4.187 Joules. The final temperature can be determined by setting up equations based on heat transfer between the water, cup, and ice.
hils0005
Messages
61
Reaction score
0
A cup made of 100g of aluminum holds 200g of water at 50deg C, a 10g piece of ice is placed in the cup of water, what is the final temperature?

2. Homework Equations
Q=L(f)m
S=cm lnTf/Ti
specific heat of aluminum 0.90 J/gC



The Attempt at a Solution


I think the first step is to determine S(ice)
Q=Lm=79.5 cal/g * 10g=795cal
S(ice)=Q/T=795/273K=2.91
S(water)=Q/T=-795/323K=-2.46
2.91-2.46=.45cal/K

then as 0deg C water goes to 50deg C?
I believe I should be using an integral as the ice will be changing the temp of the water?
S(ice)=cmln(Tf/Ti)
1cal/gC * 10g ln(795/323)=9

S(water)=cmln(Tf/Ti)
1cal/gC*200 ln(795/323)=180

So now I'm confused-because I believe I would need to know the final temp of the water before calculating S with the Steel??
I also do not understand how to convert J/gC to cal
 
Physics news on Phys.org
hils0005 said:
A cup made of 100g of aluminum holds 200g of water at 50deg C, a 10g piece of ice is placed in the cup of water, what is the final temperature?

2. Homework Equations
Q=L(f)m
S=cm lnTf/Ti
specific heat of aluminum 0.90 J/gC
This does not involve an entropy calculation. This is simply a heat flow calculation. You have to know the specific heat of Al, Water and Ice as well as the heat of fusion of water/ice. Then you have to set up equations for the change in temperature in terms of the heat flow from the water/cup to the ice and the final temp. Then solve the equations.

You can't convert Joules/g C to Calories. You can convert Joules/g C to Calories/g C by dividing by 4.187 Joules (= 1 Cal.)

AM
 
Last edited:
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top