Implicit differentiation to find the slope

fishingspree2
Messages
138
Reaction score
0

Homework Statement



(x - h)^2 + (y - k)^2 = r^2
where h,k and r are constants

The Attempt at a Solution



<br /> \begin{array}{l}<br /> \frac{d}{{dx}}\left[ {(x - h)^2 + (y - k)^2 } \right] = \frac{d}{{dx}}r^2 \\ <br /> 2(x - h) + 2\frac{{dy}}{{dx}}(y - k) = 0 \\ <br /> \Rightarrow \frac{{dy}}{{dx}} = - \frac{{(x - h)}}{{(y - k)}} \\ <br /> \end{array}

Is my work correct?
Thank you
 
Physics news on Phys.org
looks good to me =P
 
Yeah it seems all right.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top