Solving Complex Homework Equations

  • Thread starter Thread starter hayowazzup
  • Start date Start date
  • Tags Tags
    Complex Homework
hayowazzup
Messages
63
Reaction score
0

Homework Statement


1 = 121 sinθ *cosθ + 592.9 (cos²θ)


Homework Equations





The Attempt at a Solution



1= 60.5 * 2 *sin θ *cosθ + 592.9 (cos²θ)
1= 60.5 sin 2θ + 592.9 (cos²θ)
1-60.5 sin 2θ / cos θ cos θ= 592.9

am i doing it rite? i don't know what to do
 
Physics news on Phys.org
Use sin^2 + cos^2 =1
 
but i don't know how to get rid of sin θ *cosθ
 
You wrote sin(theta)*cos(theta) in terms of sin(2*theta). Write cos(theta)^2 in terms of cos(2*theta).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top