Sum of Reciprocals of Prime Numbers Equals 1

Borek
Mentor
Messages
29,125
Reaction score
4,546
reciprocals of primes summed to 1

As the other thread about sum of primes started it reminded me about the idea I had long ago.

My starting point was Erathostenes sieve. It occurred to me that multiples of 2 make half of all natural numbers, multiples of 3 make 1/3 of all natural numbers and so on. And as multiplies of prime numbers have to cover all natural numbers, correctly constructed sum of their reciprocals must equal 1. This is not as obvious as it seemed to me at first, as some multiplies of 2 and 3 will be calculated twice, so it has to be 1/2+1/3-1/(2*3) - but it still can be done.

Let P be set of all prime numbers. Let's define some more sets:

\forall {a, b} \in P, a < b \rightarrow ab \in P_2

\forall {a, b, c} \in P, a < b < c \rightarrow abc \in P_3

and so on P4, P5...

each of these sets has elements

p_{1i} \in P, p_{2i} \in P_2, p_{3i} \in P_3 ...

when combined

\sum {\frac 1 p_{1i} } - \sum {\frac 1 p_{2i} } + \sum {\frac 1 p_{3i} } - \sum {\frac 1 p_{4i} } ... = 1

(note: could be I am misusing notation, what I mean is "if a < b < c then abc is a member of set P3 - that's a way of using each combination of three primes only once, could be it can be done much simpler; please remember I am a chemist :blushing:)
 
Last edited:
Physics news on Phys.org
What you've called Pk is simply the set of integers which is a product of k distinct primes. Then the identity you have written is (almost) the same as expanding the following expression
<br /> \prod_{p \rm{\ prime}}\left(1-\frac{1}{p}\right) = 0,<br />
which is true.

You have to be careful when you expand this though. That's because the series you get is not absolutely convergent, so the order in which you sum it is important.
In fact, in your expression, each of the summations is infinite, so it doesn't make sense as it is written.
 
So if I understand you correctly I should write it as

\lim_{n\rightarrow \infty} (\sum^n \frac{1}{p_{1i}} - \sum^n \frac{1}{p_{2i}} + \sum^n \frac{1}{p_{3i}} - \sum^n \frac{1}{p_{4i}} + ...) = 1

But product version is much more elegant
 
I'm not sure about how you have written it. If you let Pk,N be the products of distinct primes less than N, then write your sum using these, then let N go to infinity, then it will converge 1.

You might want to look at the http://en.wikipedia.org/wiki/Riemann_zeta_function" and, in particular the Euler product formula,
<br /> \sum_{n\geq 1}\frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1-p^{-s}}.<br />
or, the reciprocals
<br /> \left(\sum_{n\geq 1}\frac{1}{n^s}\right)^{-1} = \prod_{p \text{ prime}} (1-p^{-s}).<br />

If s>1 you can expand the right hand side, and it should vanish as s->1.
 
Last edited by a moderator:
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top