Choice of method[1] is to some extent a matter of taste. If the network is particularly simple or only a specific current or voltage is required then ad-hoc application of some simple equivalent circuits may yield the answer without recourse to the more systematic methods.
* Superposition is possibly the most conceptually simple method but rapidly leads to a large number of equations and messy impedance combinations as the network becomes larger.
* Nodal analysis: The number of voltage variables, and hence simultaneous equations to solve, equals the number of nodes minus one. Every voltage source connected to the reference node reduces the number of unknowns (and equations) by one. Nodal analysis is thus best for voltage sources.
* Mesh analysis: The number of current variables, and hence simultaneous equations to solve, equals the number of meshes. Every current source in a mesh reduces the number of unknowns by one. Mesh analysis is thus best for current sources. Mesh analysis, however, cannot be used with networks which cannot be drawn as a planar network, that is, with no crossing components.[2]