Obtaining the connection from Parallel Transport

InbredDummy
Messages
82
Reaction score
0
How do I obtain the Levi-Civita connection from the concept of parallel transport?

So Do Carmo asks to prove that for vector fields X, Y on M, and for c(t) an integral curve of X, i.e. c(t_0) = p and X(c(t)) = dc/dt, the covariant derivative of Y along X is the derivative of the parallel transport of Y(c(t)).

Do I just prove that the derivative of the parallel transport of a vector field satisfies the definition of an affine connection, metric compatibility and symmetric properties?

I tried doing this but I ran into some road blocks.

Is there an elegant way prove this?
 
Physics news on Phys.org
I think I solved it. Thanks anyway.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top