Drawing a Gradient Field: f(x,y)=xy^2

  • Thread starter Thread starter stanford1463
  • Start date Start date
  • Tags Tags
    Fields Gradient
stanford1463
Messages
44
Reaction score
0
Does anyone know how to draw a gradient field? For example, how do you draw one of f(x,y)=xy^2
 
Physics news on Phys.org
Yes.
 
I believe HallsofIvy answered this question on Feb 11-07 under "How to graph vector fields". must use defination of grad f
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top