Composition of functions, domain, range

jaejoon89
Messages
187
Reaction score
0
A = (0, infinity), B = C = D = R where R is all real numbers
f: A->B, g: B->C, h: C->D
f(x) = lnx, g(y) = 3y, h(z) = e^z
h o g o f ?

--------------------------------------------
For the following to be defined doesn't
1) range(f) ⊆ domain(g)
2) range(g o f) ⊆ domain(h)

So g o f should be defined since R ⊆ R and h o (g o f) should be defined since R ⊆ R.

But I don't understand how can you have the function h with the range of all real numbers when the exponential function only has a range of all positive real numbers?

So, what will the domain of the result be?

h(g(f(x)) = x^2 , all reals (?)
 
Last edited:
Physics news on Phys.org
Your formula h(g(f(x))) is incorrect. Work it out again without simplifying it.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top