Proving convergence of infinite series

utleysthrow
Messages
24
Reaction score
0

Homework Statement



\sum \frac{(-1)^{n}}{n+n^{2}}

Does this series converge as n -> infinity?

Homework Equations





The Attempt at a Solution



First, by the absolute convergence test, \sum \frac{(-1)^{n}}{n+n^{2}} should converge if \sum \left|\frac{(-1)^{n}}{n+n^{2}}\right| converges.



Second, \sum \left|\frac{(-1)^{n}}{n+n^{2}}\right| = \frac{1}{n+n^{2}}< \sum 1/n^{2}

Because the sum 1/n^2 converges, by the comparison test, \sum \left|\frac{(-1)^{n}}{n+n^{2}}\right| converges.

Which means that \sum \frac{(-1)^{n}}{n+n^{2}} converges as well (by the absolute convergence test).
 
Physics news on Phys.org
Your proof appears to be valid.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top