Polynomials f(x) & g(x) in Z[x] Relatively Prime in Q[x]

  • Thread starter Thread starter esisk
  • Start date Start date
  • Tags Tags
    Polynomials
esisk
Messages
43
Reaction score
0
trying to show that polynomials f(x), g(x) in Z[x] are relatively prime in Q[x] iff the ideal they generate in Z[x] contains an integer.Thanks .Not homework
 
Physics news on Phys.org
Z[x] contains an integer => f(x), g(x) coprime in Q[z] is easy. If f(x) and g(x) are coprime in Q[x], then there exist a(x) and b(x) in Q[x]. such that a(x) f(x) + b(x) g(x) = 1. There is an integer n such that n a(x) and n b(x) have coefficients in Z (think about why this is). Then n a(x) f(x) + n b(x) g(x) = n, so the ideal generated by f and g in Z[x] contains an integer.
 
Last edited:
This is quite Rochfor1, thank you. And, yes, I will be able to do the other implication.
 
Sorry, I meant "quite clear". Thanks
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...

Similar threads

Back
Top