Questions about conic sections

  • Thread starter Thread starter gangsta316
  • Start date Start date
  • Tags Tags
    Conic sections
AI Thread Summary
To find the focii and directrices of a conic section, it is recommended to convert the equation to its standard form, as no simpler method is identified. For determining the type of conic, the discriminant B² - 4AC from the general form Ax² + Bxy + Cx² + Dx + Ey + F = 0 can be used: a negative value indicates a circle or ellipse, zero indicates a parabola, and a positive value indicates a hyperbola. The discussion also touches on the need for methods to handle degenerate conics. Overall, the focus is on seeking straightforward algorithms for dealing with conic sections.
gangsta316
Messages
28
Reaction score
0
Given the equation of a conic section, how can I:

1) find its focii

2) find the equations of its directrices

3) find out what type of conic it is, without using either the arduous matrix method or the equally arduous rotation method

To be honest, I don't really like conic sections and I'm just looking for an algorithm for these.

Thanks for any help.
 
Mathematics news on Phys.org
gangsta316 said:
Given the equation of a conic section, how can I:

1) find its focii

2) find the equations of its directrices

3) find out what type of conic it is, without using either the arduous matrix method or the equally arduous rotation method

To be honest, I don't really like conic sections and I'm just looking for an algorithm for these.

Thanks for any help.
For both (1) and (2), I don't know of any method simpler than finding its standard equation. For 3, if the conic section is given in the general for Ax^2+ Bxy+ Cx^2+ Dx+ Ey+ F= 0, look at its "discriminant" B^2- 4AC. If it is negative, the conic section is either a circle or an ellipse. If it is 0, the conic section is a parabola. If it is positive, the conic section is a hyperbola.

(This doesn't really have anything to do with "Linear and Abstract Algebra" so I am moving it to "General Math".)
 
HallsofIvy said:
For both (1) and (2), I don't know of any method simpler than finding its standard equation. For 3, if the conic section is given in the general for Ax^2+ Bxy+ Cx^2+ Dx+ Ey+ F= 0, look at its "discriminant" B^2- 4AC. If it is negative, the conic section is either a circle or an ellipse. If it is 0, the conic section is a parabola. If it is positive, the conic section is a hyperbola.

(This doesn't really have anything to do with "Linear and Abstract Algebra" so I am moving it to "General Math".)

Thank you. For 3, how about degenerate conics?

How can I find the focii and directrices from the standard equation?
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top