Uncertainty Principle and Fourier Transform

gareththegeek
Messages
16
Reaction score
0
I have read that the time dependent wavefunction is related to the Fourier transform of the wavefunction for the angular wavenumber like so

\bar{\psi}(k,t) = \frac{1}{\sqrt{2\pi}}\int \psi(x,t)e^{-ikx}dx

Can anyone explain why it is relevant to take the Fourier transform of the wavefunction in this case?

Is it the case that the wavefunction is a composite of more than one sinusoidal wave, taking the Fourier transform of which allows analysis of the component frequencies where the component frequencies are related to the angular wavenumber?

I understand that this leads to the Heisenberg Uncertainty Principle since the more you compress the wavefunction the more spread out becomes the Fourier transform, meaning therefore that you cannot know both with 100% accuracy. Is this right?

Thanks,
G
 
Physics news on Phys.org
gareththegeek said:
Is it the case that the wavefunction is a composite of more than one sinusoidal wave, taking the Fourier transform of which allows analysis of the component frequencies where the component frequencies are related to the angular wavenumber?

Yes!

I understand that this leads to the Heisenberg Uncertainty Principle since the more you compress the wavefunction the more spread out becomes the Fourier transform, meaning therefore that you cannot know both with 100% accuracy. Is this right?

Yes! :smile:
 
Nice! Perhaps I'm finally beginning to get the hang of this ere quantum stuff then eh, eh?
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top