Centripetal Acceleration & Frictional Force

AI Thread Summary
The discussion revolves around calculating the maximum speed a light truck can maintain while navigating a curve with a radius of 75.0 m, given its maximum speed of 32.0 m/s on a 150 m radius curve. The centripetal force, determined by static friction, is assumed to be constant for both curves. By applying the formula Fc = m(v^2/r) and equating the forces for both curves, the user derives the equation m(v1^2/r1) = m(v2^2/r2). After simplifying, the calculated maximum speed for the smaller radius curve is confirmed to be 22.6 m/s, validating the user's method and reasoning.
amaryllia
Messages
8
Reaction score
0

Homework Statement


A certain light truck can go around a flat curve having a radius of 150 m with a maximum speed of 32.0 m/s. With what maximum speed can it go around a curve having a radius of 75.0 m?

Homework Equations


Fc = m(v^2/r)

Fc = net centripetal force
m = mass
v = tangenital speed
r = radius

The Attempt at a Solution



The answer I got is what is in the back of my book, but I am unsure if I took the right path to get to the answer and if my reasoning is sound. Any feedback would be greatly appreciated!

In a free body diagram of this problem the only force acting in the radial direction is the force of static friction keeping the car on the road. Although the problem does not state this directly, I'm assuming that the truck is taking the second curve of radius 75.0 m under the same road conditions as the first curve. If this is true, then the net centripetal force would be equal in both curves (the force of static friction is the same on both curves).

If Fc = m(v^2/r) and Fc is the same in both situations, then I can set m(v^2/r) of the first curve equal to the second, getting:
m(v1^2/r1) = m(v2^2/r2)
where v1 = tangenital velocity of curve 1 = 32.0 m/s
r1 = radius of curve 1 = 150 m
v2 = unknown solving for
r2 = radius of curve 2 = 75 m

I can cancel out mass, and get:
32^2/150 = v2^2/75

For a solution, I get v2 = 22.6 m/s.
 
Last edited:
Physics news on Phys.org
Yes both your method and reasoning are correct.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top