Pdf of area and circumference of a circle

uva123
Messages
8
Reaction score
0

Homework Statement


Suppose that the radius X of a circle is a random variable having the following p.d.f.:
f(x)={ (1/8)(3x=1) for 0<x<2
0 otherwise
Determine the p.d.f. of the area of the circle and the circumference of the circle.

Homework Equations


Area=\Pir2
Circumference=2\Pir

The Attempt at a Solution


can i just insert f(x) in for r in both equations to generate the pdf??
meaning...
if g is the area of the circle with r=f(x)
g(f(x))={\Pi[(1/8)(3x+1)]2 for 0<x<2
0 otherwise
likewise for circumference
 
Physics news on Phys.org
no, they will be related by
|f(r)dr| = |f(c)dc|

where c is circumference & teh change dc correspond to the incremental dr
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top