Basic Conversion from Translational Motion Equation

AI Thread Summary
The discussion focuses on deriving the equations t = sqrt(2h/g) and t = Vo*sqrt(2h/g) from standard translational motion equations for MCAT preparation. It clarifies that only t = sqrt(2h/g) is correct when the initial velocity (Vo) is zero, and emphasizes the mathematical error in simplifying the expression. The correct approach involves recognizing that sqrt(a^2 - b^2) does not equal a - b, leading to the proper formulation of t = sqrt[(2h - 2Vot)/g]. Additionally, the distinction between using these equations for free fall versus projectile motion is highlighted, noting that t = sqrt(2h/g) represents only half the time for a full trajectory. Understanding these nuances is crucial for accurate application in physics problems.
TrueBlood
Messages
4
Reaction score
0
Studying for the MCAT, and trying to figure out how t = sqrt(2h/g) and t = Vo*sqrt(2h/g) is derived from the standard translational motion equations.

h = change in h
t = change in t

thus...

h = Vot + 1/2g(t)^2
h - Vot = 1/2g(t)^2
(2h)/g - (2Vot)/g =t^2
sqrt(2h/g) - sqrt(2Vot)/g = t

Obviously, I don't know how to simplify it further.

Thanks.
 
Mathematics news on Phys.org
TrueBlood said:
Studying for the MCAT, and trying to figure out how t = sqrt(2h/g) and t = Vo*sqrt(2h/g) is derived from the standard translational motion equations.
Those equations cannot both be correct--they have different dimensions!

Only the first is correct, and only when Vo = 0.
 
TrueBlood said:
h = Vot + 1/2g(t)^2
h - Vot = 1/2g(t)^2
(2h)/g - (2Vot)/g =t^2
sqrt(2h/g) - sqrt(2Vot)/g = t
Also realize that your last step is mathematically incorrect:

\sqrt{a^2 - b^2} \ne a - b

For example sqrt(5^2 - 3^2) = sqrt(16) = 4 ≠ 5 - 3
 
The last step, mathematically correct, would be...

sqrt[(2h-2Vot)/g] = t

and in a free-fall equation, where Vo = 0, then t = sqrt(2h/g)

I found out t = Vo*sqrt(2h/g) when you are trying to find the range (r = Vot) and using t = sqrt(2h/g) when you don't have t.
Thx.
 
TrueBlood said:
The last step, mathematically correct, would be...

sqrt[(2h-2Vot)/g] = t

and in a free-fall equation, where Vo = 0, then t = sqrt(2h/g)
Good.

I found out t = Vo*sqrt(2h/g) when you are trying to find the range (r = Vot) and using t = sqrt(2h/g) when you don't have t.
Careful. That equation as written makes no sense. You probably meant to use r instead of t. And t = sqrt(2h/g) would only be half the time for the full trajectory.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top