- 665
- 68
Homework Statement
Verify the following commutation relations using \vec J = \vec Q \times \vec p and [Q_{\alpha},p_{\beta}]=i \delta_{\alpha \beta} I
1. [J_{\alpha}, J_{\beta}]=i \epsilon_{\alpha \beta \gamma} J_{\gamma}
2. [J_{\alpha}, p_{\beta}]=i \epsilon_{\alpha \beta \gamma} p_{\gamma}
3. [J_{\alpha}, G_{\beta}]=i \epsilon_{\alpha \beta \gamma} G_{\gamma}
Homework Equations
note epsilon is 1 when alpha beta gamma are in permutable order, -1 when they are not, and 0 if any are equal.
The Attempt at a Solution
Diving right in on the first one,
[J_{\alpha},J_{\beta}]=[(Q \times p)_{\alpha}, (Q \times p)_{\beta}] = (Q \times p)_{\alpha}(Q \times p)_{\beta}-(Q \times p)_{\beta}(Q \times p)_{\alpha}=?
is this the right way to go about this? should i be using the jacobi identity instead?