Help applied probem - max & min

  • Thread starter Thread starter ayrestaurant
  • Start date Start date
  • Tags Tags
    Applied Max
ayrestaurant
Messages
6
Reaction score
0
1. A drug that stimulates reproduction is introduced into a colony of bacteria. After t minutes, the number of bacteria is given approximately by N() = 1500 + 12t^2 - t^3, 0≤t≤50 At what value of t is the number of bacteria maximal?



2. Possible answers

a. 10min b. 9min c.8min d.0min


provide steps please :D

thnx!
 
Physics news on Phys.org
Differentiatr N(t), set it equal to zero and find trhe value of t.
 
And even if you didn't know how to do what hunt_mat suggested you could simply plug in the values and compare what you get...
 
thanx!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top