Heat equation with nonhomogeneous boundary conditions

tjackson3
Messages
140
Reaction score
0

Homework Statement



Consider
\frac{\partial u}{\partial t} = k\frac{\partial^2u}{\partial x^2} subject to
u(0,t) = A(t),\ u(L,t) = 0,\ u(x,0) = g(x). Assume that u(x,t) has a Fourier sine series. Determine a differential equation for the Fourier coefficients (assume appropriate continuity).

Homework Equations



Coefficients of the Fourier sine series of f(x):
B_n = \frac{2}{L}\int_0^L f(x)\sin(n\pi x/L)\ dx

The Attempt at a Solution



I'm stuck just getting a start. The problem is that u(x,t) will not converge to its Fourier sine series at x = 0 unless A(t) is identically zero. This also kills the ability to perform term-by-term differentiation on the FSS. It seems impossible to impose the boundary condition at x = 0. Thoughts?
 
Last edited by a moderator:
Physics news on Phys.org
BUMP.

I also have this same question. I was also stuck at the same point. Since by assumption,
u(x,t) ≈ \sum B_n(t)sin ( \frac{n \pi x}{L})
then it follows that you can't differentiate since it is a sine series. Sine series implies it must be continuous and u(0,t)=u(L,t)=0. However, u(0,t)=A(t).

I'm not sure how to approach this problem.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top