Finding a probability given joint p.d.f of the continuous random variables

AI Thread Summary
To find the probability P(X+Y<2) using the joint probability density function f(x,y) = (2y+x)/8 for the specified ranges, it is essential to visualize the region of integration. Drawing a diagram helps determine the correct limits for double integration. The integration can be performed either as dxdy or dydx, depending on which is easier for the given region. For this specific problem, the area forms a triangle, and careful consideration of the limits is crucial. Understanding how to break the region into parts for different probabilities, such as P(X+Y<3), is also important for accurate integration.
nabilsaleh
Messages
14
Reaction score
0
I'm having a trouble doing this kind of problems :S

Lets try this for example:

The joint p.d.f of the continuous random variable X and Y is:

f(x,y)= (2y+x)/8 for 0<x<2 ; 1<y<2

now we're asked to find a probability, say P(X+Y<2)

I know i have to double integrate but how do I choose my integration limits and what do I do after I finish integrating?

My Attempt at the solution is:

P(X+Y<2) = \int_ \int (2y+x)/8 = 1 = \int [y^2/8 + xy/ 8]
 
Physics news on Phys.org
Inner integral of x, (0,2-y), outer integral of y (1,2).

or

Inner integral of y, (1,2-x), outer integral of x (0,1). (For x > 1, y < 1).
 
nabilsaleh said:
I'm having a trouble doing this kind of problems :S

Lets try this for example:

The joint p.d.f of the continuous random variable X and Y is:

f(x,y)= (2y+x)/8 for 0<x<2 ; 1<y<2

now we're asked to find a probability, say P(X+Y<2)

I know i have to double integrate but how do I choose my integration limits and what do I do after I finish integrating?

My Attempt at the solution is:

P(X+Y<2) = \int_ \int (2y+x)/8 = 1 = \int [y^2/8 + xy/ 8]

The trick to solving this kind of problem is to draw a picture of the relevant area. If you were in Calc III doing a double integral for area, that is what you would do to help you figure out the limits of integration. Same thing here. In Calc III if you were calculating the area of a region R you would do this integral:
\iint_R 1\,dxdy
with appropriate limits for dxdy or dydx, whichever is easier. The only difference is that instead of integrating 1 and getting area, you integrate your joint density f(x,y) over the region. In your example the appropriate region is a triangle. More interesting would be if you wanted P(X+Y<3). Do you see that in that case you would to need to break the region into two parts as a dydx integral but not as a dxdy integral? Draw a picture and see.
 
Last edited:
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...
Back
Top