Fun Magnetic Scalar Potential Problem

hylander4
Messages
28
Reaction score
0
"Fun" Magnetic Scalar Potential Problem

Homework Statement



An infinite cylindrical shell of radius b is placed inside a constant field B which points along the upwards z-axis. A second cylindrical shell of radius a<b is placed inside the first cylindrical shell, and the volume from b>r>a is filled with a paramagnetic material of permeability u. Find the magnetic field everywhere.

Homework Equations



H = B/(u_0) + M

H = -grad W

Laplacian W = -grad M

W is continuous over all boundaries.
The change in dW/dr over a boundary is equal to the negative change in Magnetization over the boundary.

Cylindrical laplace equation solution (From my undergraduate E+M notebook)

W(r, phi) = D_0 + A_0*(a+b*phi) +
$\EPSILON$ [r^n + (A_n*r^-n)]*[B_n*cos(n*phi)+C_n*sin(n*phi)]

Another version of this equation can be found here http://www.cord.edu/faculty/gealy/physics315/SepVarsCyl.pdf" on page two.

Summed from n = 1 to infinity


The Attempt at a Solution



Since there's no free current in this situation, I tried using magnetic scalar potential to solve this problem. Unfortunately, I end up with too many variable in the proposed Laplace equation solutions that I need to create to use the boundary conditions.

In my main attempt I had four boundary conditions and seven types of variables.

My main problem is that I need to find the H field to find the B-field, but in order to find the H-field, I also need a function for the paramagnetic material's Magnetization density M.

The forum wants me to post my attempts, but I've already filled three pages of notebook paper with failed algebra and I doubt that that would be constructive. I'm not really looking for an exact solution, I really just need general guidance.
 
Last edited by a moderator:
Physics news on Phys.org


Usually you have B = μ0 (H + M) = μ0 μ H, which determines M to be (μ-1) H. In vacuum, of course, μ = 1.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top