Euler-Lagrange equation derivation

AI Thread Summary
The discussion focuses on understanding the derivation of the Euler-Lagrange equation from the classical action, specifically proving the equivalence of two integrals involving the Lagrangian. Participants clarify that the left side represents a small change in the Lagrangian, while the right side involves partial derivatives with respect to position and velocity. The conversation emphasizes the application of the one-variable derivative definition to generalize to two variables, aiding in the mathematical proof. Acknowledgment is given to the importance of recognizing small terms in the derivation, despite initial discomfort with disregarding them. Overall, the discussion enhances comprehension of the mathematical foundations underlying the Euler-Lagrange equation.
silmaril89
Messages
85
Reaction score
0
I'm trying to understand the derivation of the Euler-Lagrange equation from the classical action. http://en.wikipedia.org/wiki/Action...93Lagrange_equations_for_the_action_integral" has been my main source so far. The issue I'm having is proving the following equivalence:

<br /> \int_{t_1}^{t_2} [L(x_{true} + \varepsilon, \dot{x}_{true} + \dot{\varepsilon},t) - L(x_{true}, \dot{x}_{true},t)] \mathrm{d}t = \int_{t_1}^{t_2} (\varepsilon \frac{\partial L}{\partial x} + \dot{\varepsilon} \frac{\partial L}{\partial \dot{x}}) \mathrm{d}t<br />

I understand the idea behind their equivalence intuitively, The derivative of a function is the change in that function, and I see how on the left side there is a representation of a small change in the lagrangian, but I'm having a hard time proving this to myself mathematically and I'd like some help.

I understand all the other steps shown in the derivation.

Thanks to anyone that responds.
 
Last edited by a moderator:
Physics news on Phys.org
You should ignore the integral, and just focus on showing that the things under the integrals are equal. If you have a function f(x), then by definition of the derivative:

[f(x+h)-f(x)]/h=f'(x)

when h goes to zero.

Therefore f(x+h)-f(x)=h*f'(x)

This is for one variable, and the generalization to two variables is:

f(x+h,y+g)-f(x,y)=h*Dxf+g*Dyf

where Dx and Dy are the partial derivatives in the x-direction and y-direction respectively.

So just let y be x dot, and f be your Lagrangian, and you get the result.
 
Ok, that makes sense. I understand how it works with just one independent variable, but I did not realize the generalization to two variables. Thanks for that.
 
Last edited:
silmaril89 said:
Ok, that makes sense. I understand how it works with just one independent variable, but I didn't not realize the generalization to two variables. Thanks for that.

O, I didn't know that you know how it works with one variable. In that case:

f(x+h,y+g)-f(x,y)=[f(x+h,y+g)-f(x,y+g)]+[f(x,y+g)-f(x,y)]=
h*Dxf(x,y+g)+g*Dyf(x,y)

which you get just from the 1-variable definition of the derivative.

Now the key is that applying the one variable definition of the derivative again:

h*Dxf(x,y+g)=h*Dxf(x,y)+g*h*DxDyf(x,y)

and if g and h are really small, just keep the first term.

So f(x+h,y+g)-f(x,y)=h*Dxf(x,y+g)+g*Dyf(x,y)=h*Dxf(x,y)+g*Dyf(x,y)
 
Thanks for clearing that up for me. That's a clever trick to apply the one variable definition again. To be honest, it's bit unsettling to me that we disregard a term based on g and h being very small. However, I do realize in the derivation on the wikipedia page I linked that that term would be very small.
 
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...

Similar threads

Replies
1
Views
1K
Replies
11
Views
2K
Replies
5
Views
2K
Replies
7
Views
1K
Replies
3
Views
3K
Back
Top