Am I correctly using the properties of the supremum in this proof?

jdinatale
Messages
153
Reaction score
0
Hi, I was wondering if I correctly applied the properties of the supremum of a set to solve the following proof. I feel like I "cheated" in the sense that I said, "Let s = Sup(B) - epsilon.

Homework Statement


If \sup A < \sup B, then show that there exists an element b \in B that is an upper bound for \sup A.

Homework Equations


None

The Attempt at a Solution


proof3.jpg
 
Physics news on Phys.org
You are essentially correct but here are some thoughts. This element s you claim is any arbitrary upper bound for A. Being any arbitrary upper bound for A there is no guarantee that s is less than sup B (hence epsilon is positive). You would need to argue that such an s exists between sup A and sup B. This isn't hard. But take this even further: recall sup A itself is already an upper bound for A, so instead of using this extra s, your proof works fine using just sup A (which we don't need to argue is less than sup B because it is given to us).

Your intuition that you cheated is so probably because there are a few small steps in reasoning jumped over by invoking lemma 1.3.7. If you think through lemma 1.3.7 as well, I believe you will feel more confident in your argument. (The crux of the lemma, of course, is that sup B is the least upper bound for B, hence there must be elements in B arbitrarily close to sup B.)
 
Tedjn said:
You are essentially correct but here are some thoughts. This element s you claim is any arbitrary upper bound for A. Being any arbitrary upper bound for A there is no guarantee that s is less than sup B (hence epsilon is positive). You would need to argue that such an s exists between sup A and sup B. This isn't hard. But take this even further: recall sup A itself is already an upper bound for A, so instead of using this extra s, your proof works fine using just sup A (which we don't need to argue is less than sup B because it is given to us).

Your intuition that you cheated is so probably because there are a few small steps in reasoning jumped over by invoking lemma 1.3.7. If you think through lemma 1.3.7 as well, I believe you will feel more confident in your argument. (The crux of the lemma, of course, is that sup B is the least upper bound for B, hence there must be elements in B arbitrarily close to sup B.)

Thank you for taking the time to help me. I'm not sure what you mean by disregard s. I reworked my proof and found I needed to use an s. What are your thoughts on the new proof?


proof4.jpg
 
Yes, this works. Here is what I meant by not using s, however. See if this also makes sense as a simplification:

We know sup A < sup B. Let ε = sup B - sup A, which is positive. By Lemma 1.3.7, there exists a b ∈ B such that b > sup B - ε = sup A. Thus, b is an upper bound for A.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top