Proving properties of matrices

Soluz
Messages
2
Reaction score
0
1) I can assume all these matrices to be 2x2.
We have matrix A and B and AB = BA, that is, they commute.. Prove if C = A^2 + 2*A and D = A^3 + 5 * I (I is identity matrix), then CD = DC.
Then give a theory that generalizes this.

2) why does R(theta)R(phi)=R(theta+phi)? (explain with "simple" words)
Knowing this, derive the formulas cos(theta + phi) and sin(theta + phi) in terms or cos(theta),cos(phi),sin(theta), and sin(phi).

-

I haven't done a proof course yet so I'm completely lost.
 
Physics news on Phys.org
Take 2 arbitrary matrices [arbitrary values] and check what happens to these arbitrary values if the 2 matrices hold AB=BA.
Then apply it.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top