DeadOriginal
- 274
- 2
Homework Statement
Use the shell method to calculate the volume of rotation about the x-axis for the region underneath the graph.
y=\sqrt[3]{x}-2, 8\leqx\leq27
Homework Equations
I was taught that I would set up the integral by using the area which would look something like \int2pi(r)(h).
The Attempt at a Solution
I saw that the maximum height was 27 and so to get the height of the cyclinder I thought that I would have to subtract the height of the equation \sqrt[3]{x}-2 from 27 to get the height I need to set up the integral. Since I was rotating around the x-axis I first converted the equation so that it would be in terms of y which came out to be x=(y+2)^{3}. I then started plugging it into the integral. I knew that since 8\leqx\leq27 I would be integrating from (0,1) because those are the possible y values for this equation within that range. My integral came out to be \int^{1}_{0}2pi(y)(27-(y+2)^{3}).
From that integral my answer came out to be \frac{54pi}{5} which I know is wrong because when I use the disk method the answer comes out to \frac{38pi}{5} which also happens to be the answer in the textbook. Could someone please check my integral to see if I have it correct? Thanks a lot.