A one-dimensional Gaussian Wave Packet

Anden
Messages
75
Reaction score
0

Homework Statement


I have been given the function
<br /> \varphi_{G}(z,t) = \frac{2}{\Delta k_0\sqrt{\pi}} \int_{-\infty}^{\infty}dk\ e^{-\frac{4(k-k_0)^2}{\Delta k_0^2}}e^{i(kz-\omega t)}<br />
and been told to do the integration and then to specify the phase and group velocity of the wave package. I also have to decide if there is dispersion or not.

Homework Equations


<br /> \omega = ck <br />
<br /> \int_{-\infty}^{\infty}dx e^{-ax^2} = \sqrt{\frac{\pi}{a}},\quad a &gt; 0<br />

The Attempt at a Solution


Using the method of completing the square I get
<br /> \begin{align*}<br /> \varphi_{G}(z,t) <br /> &amp;= \frac{2}{\Delta k_0\sqrt{\pi}} \int_{-\infty}^{\infty}dk\ \exp{\left(-\frac{4(k-k_{0})^2}{\Delta k_{0}^{2}} + i(kz - kct)\right)} \\<br /> &amp;= \frac{2}{\Delta k_0\sqrt{\pi}} \int_{-\infty}^{\infty}dk\ \exp{\left(-\frac{4}{\Delta k_{0}^{2}}(k^2 - 2k(k_0 + i\frac{\Delta k_{0}^{2}}{8}(z-ct)) + k_{0}^{2})\right)} \\<br /> &amp;= \frac{2}{\Delta k_0\sqrt{\pi}} \int_{-\infty}^{\infty}dk\ \exp{\left(-\frac{4}{\Delta k_0^2}( (k-(k_0 + i\frac{\Delta k_0^2}{8}(z-ct)))^2 - 2k_0 i\frac{\Delta k_0^2}{8}(z-ct) + \frac{\Delta k_0^4}{64}(z-ct)^2)\right)} \\<br /> &amp;= \frac{2}{\Delta k_0\sqrt{\pi}} \exp{\left(ik_0(z-ct) - \frac{\Delta k_0}{16}(z-ct)^2\right)} \int_{-\infty}^{\infty}dk\ \exp{\left(-\frac{4}{\Delta k_0^2}(k-(k_0 + i\frac{\Delta k_0^2}{8}(z-ct)))^2\right)} \\<br /> &amp;= \frac{2}{\Delta k_0\sqrt{\pi}} \exp{\left(ik_0(z-ct) - \frac{\Delta k_0}{16}(z-ct)^2\right)} \frac{\sqrt{\pi}\Delta k_0}{2} \\<br /> &amp;= \exp{\left(-\frac{\Delta k_0^2}{16}(z-ct)^2 + ik_0 (z-ct)\right)}<br /> \end{align*}<br />

Now, I don't really have a lot of experience doing things like this (in fact this is the first time). Is the result I got correct or have I done an error somewhere? Also, is there maybe an easier way to calculate the integral?
 
Physics news on Phys.org
Finally, I would be grateful if someone could help me with the other parts of the problem, i.e. determining the phase and group velocity, and deciding if there is dispersion or not.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top