One of the predictions of Special Relativity is that there is no way to determine an absolute velocity. It's possible to think of theories where one could measure absolute velocity, but these theories are not SR. There's also a fair number of failed attempts to measure absolute velocity, such as the Michelson Morley's experiment's failure to find any "ether wind", so we have some reason to believe that SR is correct on this point based on experiments to date. If we ever do find a way to measure absolute velocity, it will falsify SR.
Because GR is built on top of SR, and GR is basically a statement that SR works locally, this is also a prediction of GR.
Given that you can't simultaneously be a black hole and at the same time not be a black hole, and also given that you can tell when something is a black hole by experiment, it should be obvious that the principle that there isn't any way to determine absolute velocity via measurement rules out the possibility that you turn into a black hole sometimes and not others depending on your "state of motion".
Some miscellaneous points:
1) Netwon's force law doesn't work at all for fast moving objects. In particular, there isn't any spherical symmetry to the field of a moving object.
2) Newton's force law can't work, even in priniple without being modified for fast moving objects, because it's not covariant. So point #1 is really expected, not a surprise. The necessary relativistic corrections for electromagnetic forces turn out to be magnetism. There are similar corrections for gravity.
3) Studying the force law of an electric charge gives you some idea of how a rather similar force actually behaves relativistically. It's not quite identical to gravity, but it'll get you a lot closer than using Newton's laws, which just won't work. It's also easier to do, and is covered in most E&M textgbooks. Going into details is interesting, but would make this post too long and start to go off the point, but ask and/or start another thread if you're interested.
4) The concept of "relativistic mass" turns out to be a dead end. It's not particularly useful in computing gravity. So not only is Newton's law of gravity the wrong law, "relativistic mass" is the wrong mass to use in the law, once you get the correct law. In general, one needs to use the stress-energy tensor (which is a matrix of values, not a single number) to compute gravity. Under special circumstances, where one has a static geometry (this rules out moving masses, by the way!) one can use the Komar mass, which is a scalar, rather than the more complex stress-energy tensor for this purpose. Howeer, the Komar mass isn't the same as the "relativistic mass" from Special Relativity.
5) Measuring gravity is a bit trickier than it looks. The best way of doing it is to measure tidal gravity. Without a gravitationally neutral object, which doesn't exist, you can experimentally determine geodesic motion, but the "force" of gravity for something undergoing geodesic motion is always zero, which isn't particularly useful in defining a "force". You can avoid this issue most easily by measuring the rate of change of the force, i.e. the tidal force, which is very closely related to the Riemann tensor.
This should be enough, or more than enough, for now