Lorentz invariant theory, irreducible representations

physicus
Messages
52
Reaction score
3
"In a Lorentz invariant theory in d dimensions a state forms an irreducible representation under the subgroups of SO(1,d-1) that leaves its momentum invariant."

I want to understand that statement. I don't see how I should interpret a state as representation of a group. I have learned that representations of groups are maps which assign a linear transformation between vector spaces (or matrix) to each group element. But why should a state correspond to such a mapping? I am completely lost here.

I would be happy if someone could clear this up for me.
 
Physics news on Phys.org
Yet another example of physicists mixing up the language. States in a QFT are elements of the vector space that is acted upon by representations of some group. For example, scalars are acted upon by the trivial representation, spinors are acted upon by the spin-1/2 representation, etc.
 
physicus, it means that there is an infinite-dim., reducible rep. of the Poincare group defined by a family of unitary operators U[θa] (where θa are the group parameters) acting on the full Hilbert space H, which can be decomposed into irred. reps., corresponding to subspaces of H which are classified w.r.t. to their Casimir invariants PαPα and WαWα (with eigenvalues m² and m²s(s+1) in the massive case m²>0; refer to Wigner's classification for more details).

In theoretical physics one often says that such a (finite dim.) subspace of H is a rep., whereas is mathematics one says that a rep. acts on a (finite dim.) vector space.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top