Temperature range at which a reaction is spontaneous, Where is the mistake?

AI Thread Summary
The discussion centers around determining the temperature range for a chemical reaction to be spontaneous, based on the Gibbs free energy equation ΔG = ΔH - TΔS. The reaction has ΔH = -114.1 kJ and ΔS = -146.4 J/K, which is converted to kJ/K for consistency. The initial calculation suggests that for spontaneity, T must be greater than 780 K. However, when testing this value, it results in a positive ΔG at 900 K, indicating non-spontaneity. Conversely, using a temperature below 780 K yields a negative ΔG, confirming spontaneity. The confusion arises from handling the negative signs in the inequality when solving for T. The discussion emphasizes the importance of correctly managing negative values to avoid errors in the inequality direction, suggesting that plugging in values before manipulating the inequality can help clarify the calculations and avoid mistakes.
drtg45
Messages
5
Reaction score
0
For a chemical reaction we have, ΔH=-114.1kJ and ΔS=-146.4J/K ---> ΔS=-146.4·10^{-3}kJ/K.

Question: Determine the temperature range at which the reaction is spontaneous.

A reaction is spontaneous when ΔG is negative in the equation ΔG=ΔH-TΔS, so I do:

ΔG=ΔH-TΔS

0>ΔH-TΔS

-ΔH>-TΔS

\frac{-ΔH}{-ΔS}<T (the inequality sign changes direction when we multiply or divide both sides by a negative number right?)

\frac{ΔH}{ΔS}<T (signs cancel each other)

\frac{-114.1kJ}{-146.4·10^-3kJ/K}<T (we input the values)

780K<T , so this tells us that the T must be greater than 780K in order for the reaction to be spontaneous, but then when I check my answer in the original equation:

ΔG=ΔH-TΔS

ΔG=-114.1kJ-(900K)(-146.4·10^{-3}kJ/K) ---> ΔG=18kJ , My inequality answer I suppose is wrong because if T is greater than 780K (in this example I used 900K) then ΔG is positive and the reaction is non spontaneous.

ΔG=-114.1kJ-(200K)(-146.4·10^{-3}kJ/K) ---> ΔG=-85kJ , In here if we use a T lower than 780K the reaction is spontaneous.

I know I made a mistake somewhere because these results are not in accordance with each other, I'm guessing I made the mistake in the inequality while solving for T but I'm honestly not seeing it!, Where did I mess up?:confused:
 
Chemistry news on Phys.org
I prefer to stay away from negative signs when possible.

TΔS>ΔH

ΔS is a negative value, correct? So to quote you, "(the inequality sign changes direction when we multiply or divide both sides by a negative number right?)"

what does that do to your inequality when you divide the negative ΔS back over?
 
Hey thanks for your reply, I just finished posting something about inequalities in the General Math section, it would be great if you could check it out:

https://www.physicsforums.com/showthread.php?t=627753

maybe by doing what I describe in there the problems brought about by the minus sign and the change of direction of the inequality sign can be avoided?
 
-ΔH>-TΔS

plug values

(-1)(-114.1kJ)> (-1)T(-146.4·10^−3kJ/K)

multiply. do you have any negative values in your inequality?
 
ChiralWaltz said:
-ΔH>-TΔS

plug values

(-1)(-114.1kJ)> (-1)T(-146.4·10^−3kJ/K)

multiply. do you have any negative values in your inequality?

That's what I'm talking about, plugging the values before we get to make the mistake and change the direction in the inequality sign.
 
(-1)(-114.1kJ)> (-1)T(-146.4·10^−3kJ/K)

Since you have 2 negative numbers being multiplied on either side, they become positive. Now you don't have have negative numbers anymore, so you don't need to flip the inequality sign when you divide.
 
Thread 'How to make Sodium Chlorate by Electrolysis of salt water?'
I have a power supply for electrolysis of salt water brine, variable 3v to 6v up to 30 amps. Cathode is stainless steel, anode is carbon rods. Carbon rod surface area 42" sq. the Stainless steel cathode should be 21" sq. Salt is pure 100% salt dissolved into distilled water. I have been making saturated salt wrong. Today I learn saturated salt is, dissolve pure salt into 150°f water cool to 100°f pour into the 2 gallon brine tank. I find conflicting information about brine tank...
I'm making poor man's nitric acid to refine silver from scrap. I would like to waste as little as possible. I've noticed that about half the acid is destroyed oxidizing the metals, and I'd like to reduce that if possible. One reference mentioned that I lose only one in four in a "dilute solution" instead of half. How dilute must it be to allow the NO2 to disproportionate so that half of it will redissolve and become nitric acid again?
Engineers slash iridium use in electrolyzer catalyst by 80%, boosting path to affordable green hydrogen https://news.rice.edu/news/2025/engineers-slash-iridium-use-electrolyzer-catalyst-80-boosting-path-affordable-green Ruthenium is also fairly expensive (a year ago it was about $490/ troy oz, but has nearly doubled in price over the past year, now about $910/ troy oz). I tracks prices of Pt, Pd, Ru, Ir and Ru. Of the 5 metals, rhodium (Rh) is the most expensive. A year ago, Rh and Ir...
Back
Top