Conditional probability with urns

AI Thread Summary
The discussion revolves around calculating the conditional probability of selecting a white ball from urn A given that exactly two white balls were drawn from three urns. The initial calculations for the probabilities of events E (white from urn A) and F (exactly two white balls) were incorrect, particularly in determining P(EF) and P(F). The correct probability of event F is found to be 11/36, not 3/8, which significantly affects the conditional probability calculation. The correct approach involves accurately considering the probabilities of drawing from each urn based on their respective compositions of red and white balls. Ultimately, the correct conditional probability P(E|F) is derived as 7/11, highlighting the importance of precise calculations in probability problems.
CAF123
Gold Member
Messages
2,918
Reaction score
87

Homework Statement


Consider 3 urns. Urn A contains 2 white and 4 red balls, Urn B contains 8 white and 4 red balls and Urn C contains 1 white and 3 red balls. If 1 ball is selected from each urn, what is the probability that the ball chosen from urn A was white given that exactly 2 white balls were selected?

The Attempt at a Solution


Let E be the event that a white ball was chosen from urn A
Let F be the event that exactly 2 white balls were selected.

Given that the same colour of balls are indistinguishable , we have |s| = (2 choose 1) x (2 choose 1) x (2 choose 1) = 8 possibilities
Therefore F = {(WRW),(WWR),(RWW)} and E = {(WWW),(WRW),(WWR),(WRR)}
So, P(E|F) = \frac{P(EF)}{P(F)} = \frac{\frac{2}{8}}{\frac{3}{8}} = 2/3
The given answer is 7/11, which is slightly below this - where is the error?
Many thanks.
 
Physics news on Phys.org
Your basic concept is correct but you appear to have done the arithmetic incorrectly- at least your "P(EF)= 2/9" and "P(F)= 3/8" are wrong but you don't show how you got those.

Yes, P(F), the probability that exactly two white balls are drawn can be calculated by looking at "WRW", "WWR", and "RWW". Since the first urn contains two white balls and four red, the probability that the first ball drawn is white is 2/6= 1/3 and the probability that it is red is 4/6= 2/3. The second urn contains eight white and four red balls so that the probability the second ball drawn is white is 8/12= 2/3 and the probability it is red is 4/12= 1/3. The third urn contains one white and three red balls so the probability the third ball drawn is white is 1/4 and the probability it is red is 3/4.

So the probability of "WRW" is (1/3)(1/3)(1/4)= 1/36. The probability of "WWR" is (1/3)(2/3)(3/4)= 1/6. The probability of "RWW" is (2/3)(2/3)(1/4)= 1/9. The probability of "two white", in any order, is P(F)= 1/36+ 1/6+ 1/9= 1/36+ 6/36+ 4/36= 11/36, not "3/8".

The event "the first ball drawn is white and two white balls are drawn" just drops "RWW" from the possible cases so the probability of that is 1/36+ 1/6= 1/36+ 6/36= 7/36.
 
I said EF = {(WRW),(WWR)} and the probability of attaining this out of the sample space was 2/8. Similarly, F = {(WRW),(WWR),(RWW)} which gives P(F) = 3/8. (3 elements out of sample space of 8 elements)
This method does not take into account the numbers of red and white balls in ech urn, but at the same time, I don't see anything wrong with what I have done.
 
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Since ##px^9+q## is the factor, then ##x^9=\frac{-q}{p}## will be one of the roots. Let ##f(x)=27x^{18}+bx^9+70##, then: $$27\left(\frac{-q}{p}\right)^2+b\left(\frac{-q}{p}\right)+70=0$$ $$b=27 \frac{q}{p}+70 \frac{p}{q}$$ $$b=\frac{27q^2+70p^2}{pq}$$ From this expression, it looks like there is no greatest value of ##b## because increasing the value of ##p## and ##q## will also increase the value of ##b##. How to find the greatest value of ##b##? Thanks
Back
Top