Physical meaning of Differential Cross Section in scattering

Fizicks1
Messages
41
Reaction score
0
I'm learning scattering theory from Griffiths' book, and I don't really understand the meaning of differential cross section; it's one of those things that I find hard to conceptualize and give a physical meaning to. The most intuitive description he gives is "the proportionality factor between dσ and dΩ, and that isn't very satisfying.

If anyone can give me an intuitive physical interpretation to the differential cross section, I would greatly appreciate it!

Thanks!
 
Physics news on Phys.org
Consider the total cross-section for a process (particles -> collision -> other particles): It roughly corresponds to a probability that the process happens. But then you don't know in which directions the resulting particles fly, and with which energy. The differential cross-section gives you this information.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top