On my way to Heisenberg uncert. princ.

  • Thread starter Thread starter 71GA
  • Start date Start date
  • Tags Tags
    Heisenberg
71GA
Messages
208
Reaction score
0
I did a Fourier transform of a gaussian function ##\scriptsize \mathcal{G}(k) = A \exp\left[-\frac{(k-k_0)^2}{2 {\sigma_k}^2}\right]## and derived a result ##\sigma_k \sigma_x = 1## which is the same they get on http://www4.ncsu.edu/~franzen/public_html/CH795Z/math/ft/gaussian.html. Here is a procedure i used described in 2 steps:

1 st) I did the Fourier transform of the Gaussian:

<br /> \scriptsize<br /> \begin{split}<br /> \mathcal{F}(x) &amp;= \int\limits_{-\infty}^{\infty} \mathcal{G}(k) e^{ikx} \, \textrm{d} k = \int\limits_{-\infty}^{\infty} A \exp \left[-\frac{(k-k_0)^2}{2 {\sigma_k}^2}\right] e^{ikx}\, \textrm{d} k = A \int\limits_{-\infty}^{\infty} \exp \left[-\frac{(k-k_0)^2}{2 {\sigma_k}^2} \right] e^{ikx}\, \textrm{d} k =\\<br /> &amp;= A \int\limits_{-\infty}^{\infty} \exp \left[-\frac{m^2}{2 {\sigma_k}^2} \right] e^{i(m+k_0)x}\, \textrm{d} m = A \int\limits_{-\infty}^{\infty} \exp \left[-\frac{m^2}{2 {\sigma_k}^2} \right] e^{imx} e^{ik_0x}\, \textrm{d} m =\\<br /> &amp;= A e^{ik_0x} \int\limits_{-\infty}^{\infty} \exp \left[-\frac{m^2}{2 {\sigma_k}^2} \right] e^{imx}\, \textrm{d} m = A e^{ik_0x} \int\limits_{-\infty}^{\infty} \exp \left[-u^2 \right] e^{iu \sqrt{2} {\sigma_k} x} \sqrt{2} {\sigma_k} \textrm{d} u = \\<br /> &amp;=\sqrt{2} {\sigma_k} A e^{ik_0x} \int\limits_{-\infty}^{\infty} \exp \left[-u^2 \right] e^{iu \sqrt{2} {\sigma_k} x}\, \mathrm{d} u = \sqrt{2} {\sigma_k} A e^{ik_0x} \int\limits_{-\infty}^{\infty} \exp \left[-u^2 + i u \sqrt{2} {\sigma_k} x \right]\, \mathrm{d} u =\\<br /> &amp;= \sqrt{2} {\sigma_k} A e^{ik_0x} \int\limits_{-\infty}^{\infty} \exp \left[-\left(u + \frac{i {\sigma_k} x}{\sqrt{2}} \right)^2 - \frac{i^2 {\sigma_k}^2 x^2 }{2}\right]\, \mathrm{d} u =\\<br /> &amp;= \sqrt{2} {\sigma_k} A e^{ik_0x} \int\limits_{-\infty}^{\infty} \exp \left[-\left(u + \frac{i {\sigma_k} x}{\sqrt{2}} \right)^2 + \frac{{\sigma_k}^2 x^2 }{2}\right]\, \mathrm{d} u = \\<br /> &amp;= \sqrt{2} {\sigma_k} A e^{ik_0x} \int\limits_{-\infty}^{\infty} e^{-z^2} \exp \left[ \frac{{{\sigma_k}}^2 x^2 }{2} \right]\, \mathrm{d} z = \sqrt{2} {\sigma_k} A e^{ik_0x} \exp \left[ \frac{{{\sigma_k}}^2 x^2 }{2} \right] \underbrace{\int\limits_{-\infty}^{\infty} e^{-z^2} \, \mathrm{d} z}_{\text{Gauss integral}}=\\ <br /> &amp;= \sqrt{2} {\sigma_k} A e^{ik_0x} \exp \left[ \frac{{{\sigma_k}}^2 x^2 }{2} \right] \sqrt{\pi}\\<br /> \mathcal{F} (x)&amp;= \sqrt{2\pi} {\sigma_k} A e^{ik_0x} \exp \left[ \frac{{{\sigma_k}}^2 x^2 }{2} \right]\\<br /> \end{split}<br />

2nd) I did some modifications to get the desired result:

It is said on Wikipedia that the Gauss will be normalized only if ##\scriptsize A=1 /(\sqrt{2 \pi} \sigma_k)##. I used this on ##\mathcal{F}(x)## and got a result which corresponds with a result on Wikipedia - read chapter "Fourier transform and characteristic function", so i think it must be ok but please confirm:
<br /> \mathcal{F} (x)= e^{ik_0x} e^{\frac{{{\sigma_k}}^2 x^2 }{2}}\\<br />
I used a centralized Gauss whose mean value is ##\scriptsize k_0=0## and got:
<br /> \mathcal{F} (x)= e^{\frac{{{\sigma_k}}^2 x^2 }{2}}\\<br />
Which can be rewritten as :
<br /> \mathcal{F} (x)= e^{\frac{x^2 }{2 \left(1/\sigma_k \right)^2}}\\<br />
And i can see that:
<br /> \begin{split}<br /> &amp;~~1/\sigma_k = \sigma_x\\<br /> &amp;\boxed{\sigma_k \sigma_x = 1}<br /> \end{split}<br />

Could you please tell me what is this that i just derived and tell me how can i continue to get (derive) Heisenberg uncertainty principle ##\scriptsize \Delta x \Delta p = \frac{\hbar}{2}##? I am kind of newbie with Dirac notation so take it easy on me please.
 
Physics news on Phys.org
71GA said:
<br /> \begin{split}<br /> &amp;~~1/\sigma_k = \sigma_x\\<br /> &amp;\boxed{\sigma_k \sigma_x = 1}<br /> \end{split}<br />

Could you please tell me what is this that i just derived and tell me how can i continue to get (derive) Heisenberg uncertainty principle ##\scriptsize \Delta x \Delta p = \frac{\hbar}{2}##?

What you have is simply a different notation for ##\Delta k \Delta x = 1##, although it should actually be 1/2, not 1. I haven't looked at your math in detail, but I suspect that either (a) you have misplaced a 2 somewhere, or (b) you are defining σx in terms of the probability amplitude ψ and not the probability distribution |ψ|2, or similarly for σk.k is the wavenumber, equal to ##2\pi/\lambda##. And of course ##\lambda = h/p## (de Broglie).
 
Last edited:
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top