Integrating Geodesic Equations: Kevin Brown

  • Thread starter Thread starter exmarine
  • Start date Start date
  • Tags Tags
    Geodesic Integral
exmarine
Messages
241
Reaction score
11
Kevin Brown, in his excellent book "Reflections on Relativity" p. 409, "immediately" integrates 2 geodesic equations:

\frac{d^{2}t}{ds^{2}}=-\frac{2m}{r(r-2m)}\frac{dr}{ds}\frac{dt}{ds}

\frac{d^{2}\phi}{ds^{2}}=-\frac{2}{r}\frac{dr}{ds}\frac{d\phi}{ds}

to get:

\frac{dt}{ds}=\frac{kr}{(r-2m)}

\frac{d\phi}{ds}=\frac{h}{r^{2}}

Does anyone understand that? I certainly don't.
 
Physics news on Phys.org
exmarine said:
\frac{d^{2}\phi}{ds^{2}}=-\frac{2}{r}\frac{dr}{ds}\frac{d\phi}{ds}

\frac{d\phi}{ds}=\frac{h}{r^{2}}
They both go pretty much the same way. For the second one,

\begin{eqnarray*}\frac{\frac{d^2 \phi}{ds^2}}{\frac{d \phi}{ds}} &amp;=&amp; - \frac{2}{r}\frac{dr}{ds}\\<br /> \frac{d}{ds}(\ln(\frac{d \phi}{ds})) &amp;=&amp; -2 \frac{d}{ds} \ln(r)\\<br /> \ln(\frac{d \phi}{ds}) &amp;=&amp; -2 \ln(r) + const\\<br /> \frac{d \phi}{ds} &amp;=&amp; \frac{h}{r^2}\end{eqnarray*}
 
  • Like
Likes 1 person
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top