exmarine
- 241
- 11
Kevin Brown, in his excellent book "Reflections on Relativity" p. 409, "immediately" integrates 2 geodesic equations:
\frac{d^{2}t}{ds^{2}}=-\frac{2m}{r(r-2m)}\frac{dr}{ds}\frac{dt}{ds}
\frac{d^{2}\phi}{ds^{2}}=-\frac{2}{r}\frac{dr}{ds}\frac{d\phi}{ds}
to get:
\frac{dt}{ds}=\frac{kr}{(r-2m)}
\frac{d\phi}{ds}=\frac{h}{r^{2}}
Does anyone understand that? I certainly don't.
\frac{d^{2}t}{ds^{2}}=-\frac{2m}{r(r-2m)}\frac{dr}{ds}\frac{dt}{ds}
\frac{d^{2}\phi}{ds^{2}}=-\frac{2}{r}\frac{dr}{ds}\frac{d\phi}{ds}
to get:
\frac{dt}{ds}=\frac{kr}{(r-2m)}
\frac{d\phi}{ds}=\frac{h}{r^{2}}
Does anyone understand that? I certainly don't.