Laplace analysis of simple LC tank (no resistance)

AI Thread Summary
The discussion revolves around the challenges of using Laplace transforms to analyze a simple LC tank circuit without resistance. The user is confused about the correct sign of the voltage across the capacitor when the circuit switches from charging to discharging. They correctly derive the current but struggle with obtaining the voltage directly, leading to an incorrect transfer function. A suggestion is made to redraw the circuit, focusing on the current direction and voltage relationships, which helps clarify the mistake. Ultimately, the user acknowledges the error and expresses relief at resolving the confusion.
jrive
Messages
58
Reaction score
1
I am stumped by an exercise in using Laplace transforms to analyze the voltage and current in simple LC tank. My issue is with the correct sign of the voltage across the capacitor ...let me pose the problem.

A circuit consists of a voltage source V, 2 switches, a cap C and an inductor L. The switch from the source to the cap has been on for a long time (cap is fully charged), while the switch connecting the cap to the inductor is open. Then at time t(0+), the switches toggle, and the voltage source is disconnected and the cap is now connected to the inductor.

v(0-)=V,
il(0-)=0,

The laplace circuit models are:
Cap:
i(t)=Cdv(t)/dt
I(s)=CsV(s)-Cv(0-)
V(s)=I(s)/sC+ v(0-)/S

Ind.
v(t)=Ldi(t)/dt
V(s)=LsI(s)-Li(0-)
I(s)=V(s)/sL+i(0-)/s

So...I can get the answer for the current fairly easily...Since the current into the cap is defined as positive when the switch from the source to the cap is on , then when the current flows from the cap to the inductor at t(0+), it is negative, or -Ic. So,
-Ic=IL

Cv(0-)-CsV(s)=V(s)/sL
solving for V(s),
V(s)=Cv(0-)sL/(s^2LC+1)
invLaplace(V(s))=V cos[t/sqrt(LC)] --> this is fine...

my problem is when I try to solve for the voltage directly...(keep in mind that if I obtain voltage by using this current across the cap or inductor, I do get the correct answer, but not when I try to do it directly), I have a sign problem that I can't figure out...

Since the voltage across the cap = the voltage across the inductor at time t(0+), then
I(s)/sC+v(0-)/s=LsI(s) (i(0-)==0)

this is the problem...the sign is incorrect, and this will lead to a transfer function where I have s^2LC - 1 in the denominator, and not s^2LC + 1 to get an oscillatory response. What am I missing here?

The cap model during the charging phase is as shown in figure in file cap_t(0-).bmp...and for the math to work, I need to change it to the model in figure cap_t(0+).bmp at t(0+). I just can't convince myself as to why...
 

Attachments

Last edited:
Engineering news on Phys.org
jrive said:
Since the voltage across the cap = the voltage across the inductor at time t(0+), then
I(s)/sC+v(0-)/s=LsI(s) (i(0-)==0)

this is the problem...the sign is incorrect
Hi. You're a bit long-winded, but I think I get the gist of your angst. :wink:

You say the sign is wrong, and I agree that it's wrong...so fix it!

Have you drawn the circuit of a capacitor parallel with an inductor? And marked in the current? And written the voltage across each element in terms of that current direction you drew?

Try it again. :smile:
 
Thanks for the response (and the criticism)...
 
jrive said:
Thanks for the response ...
So you discovered what you'd been doing wrong?
 
Yep...stupid mistake!
 
Hey guys. I have a question related to electricity and alternating current. Say an alien fictional society developed electricity, and settled on a standard like 73V AC current at 46 Hz. How would appliances be designed, and what impact would the lower frequency and voltage have on transformers, wiring, TVs, computers, LEDs, motors, and heating, assuming the laws of physics and technology are the same as on Earth?
While I was rolling out a shielded cable, a though came to my mind - what happens to the current flow in the cable if there came a short between the wire and the shield in both ends of the cable? For simplicity, lets assume a 1-wire copper wire wrapped in an aluminum shield. The wire and the shield has the same cross section area. There are insulating material between them, and in both ends there is a short between them. My first thought, the total resistance of the cable would be reduced...
I used to be an HVAC technician. One time I had a service call in which there was no power to the thermostat. The thermostat did not have power because the fuse in the air handler was blown. The fuse in the air handler was blown because there was a low voltage short. The rubber coating on one of the thermostat wires was chewed off by a rodent. The exposed metal in the thermostat wire was touching the metal cabinet of the air handler. This was a low voltage short. This low voltage...
Back
Top