Does Ax=Bx for All Vectors Guarantee A=B for Matrices?

  • Thread starter Thread starter eddo
  • Start date Start date
eddo
Messages
48
Reaction score
0
Given nxn matrices A and B, and an n-vector x, are there any conditions that can guarantee Ax=Bx implies A=B? I started thinking about this well working on an assignment. It is clearly not always true, since you can easily think up 2x2 examples where it is not. You can also think up examples where the determinants are non-zero, and not equal to each other, where it still doesn't hold. What conditions if any would make this implication true? Thank you.
 
Physics news on Phys.org
Try multiplying A by the inverse of B. :wink:
 
Rearrange the equation as (A-B)x = 0. Does that help?

Is this supposed to be true for all values of x or just one specific value?
 
I presume you mean: are there any conditions on x such that if Ax= Bx for that particular x, then Ax= Bx and the answer is no. If x is any single vector (other than 0. If x= 0 then Ax= Bx= 0 for all A, B.) there exist a basis including x.
Define A by Ax= x, Ay= 0 for all other basis vectors y. Let z be a basis vector other than x, define B by Ax= x, Bz= z, By= 0 for all other basis vectors. Then Ax= Bx but A is not equal to B.

Okay, slight error! In that proof there must be some "other" basis vector- if the vector space is one dimensional, and x is not 0, then Ax=Bx implies A= B!

If Ax= Bx for ALL x, then see what happens when you apply A and B to each of (1, 0, 0,...), (0, 1, 0...)...
 
Last edited by a moderator:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top