How Do I Derive Values of x and y Using Extended Euclid's Algorithm?

  • Thread starter Thread starter Bob19
  • Start date Start date
Bob19
Messages
71
Reaction score
0
extended euclid question (URGENT!)

Hi
Having the following linear combination of the two divisors a = 403 and b = 3263
403x + 3263y = 26
gcd(a,b) = 13
Using the extended euclid I get
3263 = 8*403 + 39 (1)
403 = 10 * 39 + 13 (2)
39 = 13 * 3
therefore gcd(a,b) = 13
Then using extended euclid to find x,y
I rewrite (1) and (2)
13 = 403 - 10 * 39 (z)
39 = 3263 - 8*403 (t)
According to ex.euclid I insert t into z and get the following:
13 = 403 - 10 * 3263 + 80 * 403

My question is how do I from this result derive x,y ?

Sincerley and God bless You all.

/Bob
 
Physics news on Phys.org
You're very close. Use
Bob19 said:
13 = 403 - 10 * 3263 + 80 * 403
to write 13 as a linear combination of 403 and 3263. Then compare with your desired 403x + 3263y = 26 equation.
 
Thank You for Your answer,

What do You mean ?

13 = 403 - 10 * 3263 + 80 * 403 can be divided by 13, but how does this allow be to find x,y ??

/Bob

shmoe said:
You're very close. Use
to write 13 as a linear combination of 403 and 3263. Then compare with your desired 403x + 3263y = 26 equation.
 
Last edited:
your original eqn is,

403x + 3263y = 26

or,

26 = 403x + 3263y

and you have,

13 = 403 - 10 * 3263 + 80 * 403 = 403*81 - 10*3263

or,

26 = 403*162 - 3263*20

Looking at the bolded lines, can you now see what the solutions for x and y are ?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top