Calculating Variance of Variance Estimator for Normal Distribution

  • Thread starter Thread starter phonic
  • Start date Start date
  • Tags Tags
    Variance
phonic
Messages
28
Reaction score
0
Does anyone know how to calculate the variance of the variance estimator of normal distribution?

x_i, i\in\{1,2,...,n\} are n samples of normal distribtuion N(\mu, \sigma^2).

And S^2 = \frac{n}{n-1} \sum_i (x_i - \bar x)^2 is the variance estimator, where
\bar x = \frac{1}{n} \sum_i x_i.

The question is how to calculate the following variance:
<br /> E[(S^2- \sigma^2)^2]<br />
Where the expectation is respect to sample x_i.Thanks a lot!
 
Last edited:
Physics news on Phys.org
I am pretty sure that one can find this explained in an intermediate probability textbook like Mood, Graybill & Boes.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top