Solving Non-Constant Coefficient Equation: Need Help!

  • Thread starter Thread starter hola
  • Start date Start date
  • Tags Tags
    Coefficient
hola
Messages
38
Reaction score
0
1. Use substitution x = e^t to transfer equation into one with constant coefficients and solve:
x^2 y'' -3xy' + 13y = 4 + 3x
My work:
Okay, we have
e^2t y'' - 3e^t y' + 13y = 4 + 3e^t.

Now I am absolutely stuck. No idea how to solve it. Help!
 
Physics news on Phys.org
You didn't complete the substitution! Your y' and y" are still with respect to x, not t.

Use the chain rule: dy/dx= dy/dt dt/dx. Since x= et, t= ln x and
dt/dx= 1/x. That is, dy/dx= (1/x)(dy/dt).
d2y/dx2= d((1/x)(dy/dt)/dx= (-1/x2)dy/dt+ (1/x)d(dy/dt)/dx= ((-1/x2)dy/dt+(1/x)(1/x)d2y/dt2=.
Now, x2 y'' = d2y/dt2- dy/dt
and -3xy'= -3 dy/dt
so the differential equation is
d2y/dt2- 4dy/dt+ 13y= 4+ 3ett

That should be easy to solve!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top