2D kinematics -- Calculate the acceleration of the jumping athlete

AI Thread Summary
The discussion revolves around calculating the acceleration of a jumping athlete, initially leading to confusion over an answer of 11 m/s². The participant acknowledges making an error and seeks assistance in determining the direction of acceleration, specifically mentioning a "backward 55 degrees up" reactive force. Ultimately, they express satisfaction in resolving the initial calculation issue but still need to clarify the direction of acceleration. The conversation highlights the importance of considering all forces in kinematic calculations. Accurate direction determination is essential for complete understanding of the athlete's motion.
Stewkatt
Messages
6
Reaction score
3
Homework Statement
An athlete with a mass of 62 kg jumps and lands on his feet. The ground exerts a total force of 1.1 x 10^3 N [backward 55 degrees up] on his feet. Calculate the acceleration of the athlete
Relevant Equations
F=delta p/delta t =ma
DCD301E4-C8E1-43CD-A362-D64E05F31F14.jpeg

this is my work but the answers say 11 m/s^2 so I made an error somewhere. Also if someone could help me with solving the direction for the acceleration, that would be greatly appreciated.
 
Physics news on Phys.org
Perhaps because you have omitted the "backward 55 degrees up" direction of the reactive force.
 
image.jpg

yay, I figured it out. I still have to find the direction of acceleration and that’s it.
 
Stewkatt said:
yay, I figured it out. I still have to find the direction of acceleration and that’s it.
Did you find the direction of acceleration?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top