2nd order PDE using integration by parts

perishingtardi
Messages
21
Reaction score
1

Homework Statement


Find the general solution of the equation
(\zeta - \eta)^2 \frac{\partial^2 u(\zeta,\eta)}{\partial\zeta \, \partial\eta}=0,
where ##\zeta## and ##\eta## are independent variables.

Homework Equations


The Attempt at a Solution


I set ##X = \partial u/\partial\eta## so that (\zeta - \eta)^2 \frac{\partial X}{\partial\zeta}=0. Then \int (\zeta - \eta)^2 \frac{\partial X}{\partial\zeta} \, d\zeta=f(\eta). I used integration by parts to obtain
(\zeta - \eta)^2X - 2\int \zeta X \, d\zeta + 2\eta \int X\, d\zeta = f(\eta), but I'm not sure if this is the correct method, or how to proceed.
 
Physics news on Phys.org
Hint: what is
\frac{ \partial \zeta} { \partial\eta}
 
dirk_mec1 said:
Hint: what is
\frac{ \partial \zeta} { \partial\eta}

its zero?? how does that help though?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top