3-cycle or a product of three cycles permutations

188818881888
Messages
18
Reaction score
0

Homework Statement


Show that every element in A(n)= set of even permutations, for n> or equal to 3 can be expressed as a 3-cycle or a product of three cycles.


Homework Equations


3-cycle = (_ _ _). a permutation is a function from a set A to A that is bijective.


The Attempt at a Solution


for n=3 a permuation can be (1 2 3), (1 3 2), (2 1 3), (3 1 2) etc... need help for n>3
 
Physics news on Phys.org


What factorization do you already know you can do to an even permutation?
 


Do you mean how can you express it? You can express an even permutation into a product of even number of 2-cycles. also the order of A(n) is n!/2
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top