3 Questions in regards to WORK AND ENERGY

AI Thread Summary
The discussion revolves around three physics questions related to work and energy. For the first question, the user is advised to rearrange the equation for final speed and correctly account for the height when the slide is doubled. In the second question, it's emphasized that the engine's work must overcome both gravitational and frictional forces, suggesting a need to adjust calculations accordingly. The third question highlights the importance of understanding that power is the rate of work done, implying that the relationship between speed and power needs clarification. Overall, the user seeks guidance on applying the correct principles and equations to solve these problems effectively.
mmiller39
Messages
32
Reaction score
0
I am attempting 3 questions I have worked them out but to no avail. I wonder if I am on the right track:


1st Question:

Starting from rest at the top, a child slides down the water slide at a swimming pool and enters the water at a final speed of 5.00 m/s. At what final speed would the child enter the water if the water slide were twice as high? Ignore friction and resistance from the air and the water lubricating the slide.

Here I am using the principal of conservation of mechanical energy that can be rewritten as follows:

Vf = Sqrt(Vo^2 + 2g(ho - hf)

So I assign a random number (I used 5) to hf and I get:

5.0 m/s = Sqrt(0 + 19.6(Ho - 5))

5 = Sqrt(19.6ho - 98)

25 = 19.6ho - 98

ho = 6.2755

So since the H is twice what it would be I used 12.551

And get:

Vf = Sqrt(Vo^2 + 19.6(12.551 - 5))

Vf = 12.16 <------Wrong...is there somewhere I went wrong?





SECOND QUESTION:

A 915-kg car starts from rest at the bottom of a drive way and has a speed of 3.00 m/s at a point where the drive way has risen a vertical height of 0.600 m. Friction and the drive force produced by the engine are the only two nonconservative forces present. Friction does -2870 J of work. How much work does the engine do?


So I used the Work Energy theorum:

Wnc = 1/2m(Vf^2 - Vo^2) - mg(ho - hf)

Wnc = 457.5(3)^2 - 8967(-6)

Wnc = 57919.5

Do you see anything wrong with my math?

THIRD QUESTION:


The power needed to accelerate a projectile from rest to its launch speed v in a time t is 43.0 W. How much power is needed to accelerate the same projectile from rest to a launch speed of 2 v in a time of t?

I am confused by the relationship here...are there any formulas that would apply here?

Thanks SO much!

Matt
 
Physics news on Phys.org
For 1. Rearrange Vf to get an expression for ho, you know hf = 0. Then just stick 2*ho back into your original expression to find Vf.
 
Max Eilerson said:
For 1. Rearrange Vf to get an expression for ho, you know hf = 0. Then just stick 2*ho back into your original expression to find Vf.

Do I use the same equation that I used in the beginning?
 
Last edited:
Does anyone have any ideas for the 2nd and 3rd one?

Thanks!
 
For question two, do not forget that the engine is doing work not only against gravity, but also against friction.

For question three, remember that power is the rate at which work is done.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Replies
2
Views
968
Replies
1
Views
4K
Replies
8
Views
2K
Replies
9
Views
1K
Replies
29
Views
402
Replies
58
Views
2K
Replies
6
Views
1K
Back
Top