Algebraic Multiplicity and Eigenspace

  • Thread starter Thread starter Hashmeer
  • Start date Start date
  • Tags Tags
    multiplicity
AI Thread Summary
To determine the value of h that makes the eigenspace for the eigenvalue lambda=5 two-dimensional, the rank of the matrix A must be 2. This requires that one of the pivot positions be eliminated, which can be achieved by setting h=6, making the column corresponding to h a non-pivot column. The equations derived from the nullspace show that the conditions for two independent eigenvectors are satisfied when h=6. Therefore, setting h to this value ensures the eigenspace is indeed two-dimensional. This conclusion aligns with the relationship between algebraic multiplicity and the dimension of the eigenspace.
Hashmeer
Messages
14
Reaction score
0

Homework Statement


Find h in the matrix A such that the eigenspace for lambda=5 is two-dimensional.

A= [5,-2,6,-1] [0,3,h,0] [0,0,5,4] [0,0,0,1]
A-lambda*I(n) = [0,-2,6,-1] [0,-2,h,0] [0,0,0,4] [0,0,0,-4]


Homework Equations





The Attempt at a Solution


I'm not really sure how to do this. Is there some relation between algebraic multiplicity and the eigenspace of a matrix that would help?

I tried solving this by row operations to solve for the eigenvectors in the hope that I would be able to eliminate values of h that would have resulted in more or less than a 2 dimensional eigenspace, but it didn't work out. This is the matrix I got (keep in mind this is after applying the lambda value to the diagonals) A= [0,-2,6,-1] [0,0, h-6,1] [0,0,0,4] [0,0,0,0].

I'm pretty confused about this any help would be greatly appreciated. Thanks.
 
Physics news on Phys.org
Hashmeer said:

Homework Statement


Find h in the matrix A such that the eigenspace for lambda=5 is two-dimensional.

A= [5,-2,6,-1] [0,3,h,0] [0,0,5,4] [0,0,0,1]
A-lambda*I(n) = [0,-2,6,-1] [0,-2,h,0] [0,0,0,4] [0,0,0,-4]


Homework Equations





The Attempt at a Solution


I'm not really sure how to do this. Is there some relation between algebraic multiplicity and the eigenspace of a matrix that would help?

I tried solving this by row operations to solve for the eigenvectors in the hope that I would be able to eliminate values of h that would have resulted in more or less than a 2 dimensional eigenspace, but it didn't work out. This is the matrix I got (keep in mind this is after applying the lambda value to the diagonals) A= [0,-2,6,-1] [0,0, h-6,1] [0,0,0,4] [0,0,0,0].

I'm pretty confused about this any help would be greatly appreciated. Thanks.


Hey there! the eigenspace of having lambda=5 is exactly the nullspace of A-lambda I . and since it is 2 dimensional , it suggest that the rank of the matrix is ?
 
So the rank = 2 since rank = # columns (4 in this case) - dimNul A (in this case 2). So if the rank is to equal 2 then I will need another free variable, or I need to remove a pivot position. So since h-6 is in a pivot position I can easily make it a nonpivot column by setting h=6. This would ensure that the dimension of the null space is 2.

Am I going the right way with this? It makes sense to me if this is right. Thanks for the help!
 
Hashmeer said:

Homework Statement


Find h in the matrix A such that the eigenspace for lambda=5 is two-dimensional.

A= [5,-2,6,-1] [0,3,h,0] [0,0,5,4] [0,0,0,1]
A-lambda*I(n) = [0,-2,6,-1] [0,-2,h,0] [0,0,0,4] [0,0,0,-4]
So any eigenvector of A corresponding to eigenvalue 5 must satisfy
\begin{bmatrix}0 & -2 & 6 & 1 \\ 0 & -2 & h & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & -4\end{bmatrix}\begin{bmatrix}w \\ x \\ y \\ z\end{bmatrix}= \begin{bmatrix}0 \\ 0 \\ 0 \\ 0\end{bmatrix}.

That gives the equations -2x+ 6y+ z= 0, -2x+ hy= 0, 4z= 0, and -4z= 0. The last two obviously give z= 0 so the first two equations become -2x+ 6y= 0 and -2x+ hy= 0. One obvious eigenvector is (u, 0, 0, 0). There will be another, independent, eigenvector, and so the eigenspace will be two dimensional if and only if there exist non-zero x and y satifying both -2x+ 6y= 0 and -2x+ hy= 0.


Homework Equations





The Attempt at a Solution


I'm not really sure how to do this. Is there some relation between algebraic multiplicity and the eigenspace of a matrix that would help?

I tried solving this by row operations to solve for the eigenvectors in the hope that I would be able to eliminate values of h that would have resulted in more or less than a 2 dimensional eigenspace, but it didn't work out. This is the matrix I got (keep in mind this is after applying the lambda value to the diagonals) A= [0,-2,6,-1] [0,0, h-6,1] [0,0,0,4] [0,0,0,0].

I'm pretty confused about this any help would be greatly appreciated. Thanks.
 
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Essentially I just have this problem that I'm stuck on, on a sheet about complex numbers: Show that, for ##|r|<1,## $$1+r\cos(x)+r^2\cos(2x)+r^3\cos(3x)...=\frac{1-r\cos(x)}{1-2r\cos(x)+r^2}$$ My first thought was to express it as a geometric series, where the real part of the sum of the series would be the series you see above: $$1+re^{ix}+r^2e^{2ix}+r^3e^{3ix}...$$ The sum of this series is just: $$\frac{(re^{ix})^n-1}{re^{ix} - 1}$$ I'm having some trouble trying to figure out what to...
Back
Top