A 3dim Poincare Algebra - isl(2,R)

bob2
Messages
6
Reaction score
0
The Poincare algebra is given by isl(2, R) ~ sl(2,R) + R^3. What exactly does the i stand for?
Thanks a lot in advance!
 
Last edited:
Physics news on Phys.org
I have never seen a notation ##isl(2,\mathbb{R})##. Can you give some more background? And what does ##sl_2 + \mathbb{R}^3## mean? And as far as I know, the Poincaré algebra is ten dimensional.
 
fresh_42 said:
I have never seen a notation ##isl(2,\mathbb{R})##. Can you give some more background? And what does ##sl_2 + \mathbb{R}^3## mean? And as far as I know, the Poincaré algebra is ten dimensional.
I'm sorry, my statement was incorrect. You are right about the Poincare algebra. I meant the Poincare algebra in 3dim (not 4dim) space and not the dimension of the Lie algebra. by sl(2,R) + R^3 the direct sum of the special linear algebra sl(2, R) and R^3 is denoted
 
bob2 said:
I'm sorry, my statement was incorrect. You are right about the Poincare algebra. I meant the Poincare algebra in 3dim (not 4dim) space and not the dimension of the Lie algebra. by sl(2,R) + R^3 the direct sum of the special linear algebra sl(2, R) and R^3 is denoted
In this case my question is: ##sl(2,\mathbb{R}) \oplus \mathbb{R}^3## as a Lie algebra or simply the vector space? I assume ##isl(2,\mathbb{R})## is simply an abbreviation the author of your source uses for this (presumably Lie algebra) sum. And I further assume that it is not a direct product, but an indirect, i.e. I suppose ##sl(2,\mathbb{R})## to act non-trivially on ##\mathbb{R}^3##.
If you can write down this action, you will get the multiplications in it.
And by the way, this one is six dimensional.
 
Let me make another guess. ##sl(2,\mathbb{R}) ## might formerly have been ##o(2,1)## which (I don't know without proving it) is isomorphic to ##sl_2##. So if you consider Lorentz transformations plus translations on ##\mathbb{R}^3 \cong \mathbb{R}^{2,1}## and call this algebra ##isl_2##, then it makes sense to write ##isl_2 \cong sl_2 \ltimes \mathbb{R}^3## or sloppy ##isl_2 \text{ ~ } sl_2 + \mathbb{R}^3##
 
Last edited:
sl(2,R) as I remember is isomorphic to so(2,1). Thanks so much for your reply- this way of interpreting it makes sense. Sorry, that I am replying so late- I thought I had already replied
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top