bob2
- 6
- 0
The Poincare algebra is given by isl(2, R) ~ sl(2,R) + R^3. What exactly does the i stand for?
Thanks a lot in advance!
Thanks a lot in advance!
Last edited:
I'm sorry, my statement was incorrect. You are right about the Poincare algebra. I meant the Poincare algebra in 3dim (not 4dim) space and not the dimension of the Lie algebra. by sl(2,R) + R^3 the direct sum of the special linear algebra sl(2, R) and R^3 is denotedfresh_42 said:I have never seen a notation ##isl(2,\mathbb{R})##. Can you give some more background? And what does ##sl_2 + \mathbb{R}^3## mean? And as far as I know, the Poincaré algebra is ten dimensional.
In this case my question is: ##sl(2,\mathbb{R}) \oplus \mathbb{R}^3## as a Lie algebra or simply the vector space? I assume ##isl(2,\mathbb{R})## is simply an abbreviation the author of your source uses for this (presumably Lie algebra) sum. And I further assume that it is not a direct product, but an indirect, i.e. I suppose ##sl(2,\mathbb{R})## to act non-trivially on ##\mathbb{R}^3##.bob2 said:I'm sorry, my statement was incorrect. You are right about the Poincare algebra. I meant the Poincare algebra in 3dim (not 4dim) space and not the dimension of the Lie algebra. by sl(2,R) + R^3 the direct sum of the special linear algebra sl(2, R) and R^3 is denoted