IGNORE LAST POST: I had the wrong formula for a multivariate Taylor series. Here's the fix:
The taylor series expansion of a function f(x,y) about the point (x_0,y_0) is given by
f(x,y)=\sum_{n=0}^{\infty}\sum_{k=0}^{\infty} \frac{\partial ^{n+k}f (x_0,y_0)}{\partial x^{n}\partial y^{k}} \cdot\frac{(x-x_0)^{n}}{n!} \cdot\frac{(y-y_0)^{k}}{k!}
notice that to obtain the third order Taylor polynomial, we need only sum over n+k\leq 3
We have need of some calculations...
f(x,y)=\frac{e^{x-2y}}{(1+x^2-y)^2}
\Rightarrow f(0,0)=1
f_{x}(x,y)=e^{x-2y}\frac{1-2x+x^2-y}{(1+x^2-y)^2}
\Rightarrow f_{x}(0,0)=1
f_{xx}=e^{x-2y}\frac{-1-4x+8x^2-4x^3+x^4+4xy-2x^2y+y^2}{(1+x^2-y)^3}
\Rightarrow f_{xx}(0,0)=-1
f_{xxx}(x,y)=e^{x-2y}\frac{-5+18x+15x^2-36x^3+21x^4-6x^5+x^6+9y-12xy-18x^2y+12x^3y-3x^4y-3y^2-6xy^2+3x^2y^2-y^3}{(1+x^2-y)^4}
\Rightarrow f_{xxx}(0,0)=-5
f_{y}(x,y)=-e^{x-2y}\frac{1+2x^2-2y}{(1+x^2-y)^2}
\Rightarrow f_{y}(0,0)=-1
f_{yy}(x,y)=2e^{x-2y}\frac{1+2x^2+2x^4-2y-4x^2y+2y^2}{(1+x^2-y)^3}
\Rightarrow f_{yy}(0,0)=2
f_{yyy}(x,y)=-2e^{x-2y}\frac{1+6x^2+6x^4+4x^6-6y-12x^2y-12x^4y+6y^2+12x^2y^2-4y^3}{(1+x^2-y)^4}
\Rightarrow f_{yyy}(0,0)=-2
f_{xy}(x,y)=-e^{x-2y}\frac{1+3x^2-4x^3+2x^4-3y+4xy-4x^2y+2y^2}{(1+x^2-y)^3}
\Rightarrow f_{xy}(0,0)=-1
f_{xyy}(x,y)=2e^{x-2y}\frac{1-2x+3x^2+4x^4-4x^5+2x^6-3y-8x^2y+8x^3y-6x^4y+4y^2-4xy^2+6x^2y^2-2y^3}{(1+x^2-y)^4}
\Rightarrow f_{xyy}(0,0)=2
f_{xxy}(x,y)=-e^{x-2y}\frac{1-8x^2-8x^3+17x^4-8x^5+2x^6+8xy-18x^2y+16x^3y-6x^4y+y^2-8xy^2+6x^2y^2-2y^3}{(1+x^2-y)^4}
\Rightarrow f_{xxy}(0,0)=-1
Our Taylor polynomial of order three is then
f(x,y)\sim\sum_{0\leq n+k\leq 3}\frac{\partial ^{n+k}f (0,0)}{\partial x^{n}\partial y^{k}}\cdot\frac{x^{n}}{n!}\cdot\frac{y^{k}}{k!}
=f(0,0)<br />
+\left( f_{x}(0,0)x+f_{y}(0,0)y\right)
+\left(\frac1{2}f_{xx}(0,0)x^2+f_{xy}(0,0)xy +\frac1{2}f_{yy}(0,0)y^2\right)
+\left(\frac1{6}f_{xxx}(0,0)x^3+\frac1{2}f_{xxy}(0,0)x^2y +\frac1{2}f_{xyy}(0,0)xy^2+\frac1{6}f_{yyy}(0,0)y^3\right)
\boxed{=1+(x-y)+\left( -\frac1{2}x^2-xy+y^2\right) +\left( -\frac5{6}x^3-\frac1{2}x^2y+xy^2-\frac1{3}y^3\right)}