Dustinsfl
- 2,217
- 5
Homework Statement
If A is a 3 x 3 matrix a1+2a2-a3=0, then A must be singular.
I have the answering being true but how do I prove it?
Dustinsfl said:Homework Statement
If A is a 3 x 3 matrix a1+2a2-a3=0, then A must be singular.
I have the answering being true but how do I prove it?
Dustinsfl said:We can't prove it using determinants. The equation is in the form Ax=b. Where x is the column vector 1,2,-1.
I don't understand the question. The vector in question has nothing to do with that.Dustinsfl said:Because that column vector is used in proving the singularity but I don't know how to do it.
Dustinsfl said:Column vector b is the 0 vector. It has to do with homogeneous equations have trivial and solutions. That is how A is suppose to be proving for the question.
Dustinsfl said:x is the inverse if and only if b is the I
Dustinsfl said:Nontrivial solution
Dustinsfl said:It is giving that b is the 0 vector. I am not sure if it is unique or how to show if it isn't.
Dustinsfl said:The system Ax=b of n linear equations in n unknowns has a unique solution if and only if A is nonsingular. Since x can be the 0 vector and vector <1,2,-1>, the solution isn't unique; therefore, A must be singular.