MHB 9.25 a centrifuge takes up only 0.127 m of bench space

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Centrifuge Space
Click For Summary
The discussion centers on calculating the radius of a centrifuge that claims to occupy 0.127 m of bench space while producing a radial acceleration of 4100 g at 6830 rev/min. Participants note the need to convert the rotational speed from rpm to rad/sec for accurate calculations. Using the formula for radial acceleration, they derive that the calculated radius is approximately 0.0785 m, leading to a diameter of about 0.157 m. This diameter exceeds the claimed bench space, suggesting the advertisement's claim is inaccurate. The calculations highlight the importance of unit conversion and proper application of physics formulas in verifying claims.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{An advertisement claims that a centrifuge takes up only $0.127 m$ of bench space}$
$\textsf{but can produce a radial acceleration of $4100 \, g$ at $6830 \, rev/min$}$

$\textsf{a. Calculate the requested radius of the centrifuge}$

OK the only thing I can guess here is $\frac{0.127}{2}$ as max
 
Mathematics news on Phys.org
karush said:
$\textsf{An advertisement claims that a centrifuge takes up only $0.127 m$ of bench space}$
$\textsf{but can produce a radial acceleration of $4100 \, g$ at $6830 \, rev/min$}$

$\textsf{a. Calculate the requested radius of the centrifuge}$

OK the only thing I can guess here is $\frac{0.127}{2}$ as max

$a_r = r\omega^2 \implies r = \dfrac{a_r}{\omega^2}$

you'll need to convert $\omega$ given in rpm to rad/sec
 
skeeter said:
$a_r = r\omega^2 \implies r = \dfrac{a_r}{\omega^2}$

you'll need to convert $\omega$ given in rpm to rad/sec

$r = \dfrac{a_r}{\omega^2}\\$
$\textit {how do you cancel the units? }\\$
\begin{align}
\displaystyle
\frac{0.127 \, m}{2} &\ge \dfrac{4100 \, g}{(6830\cdot 2\pi\cdot 60)^2 \, rad/s}\\
0.0635&\ge \frac{4100 \, g}{6.629849 \, rad/s}\\
0.0635&\ge 6.184
\end{align}not!
 
Last edited:
$\dfrac{6830 \, rev}{min} \cdot \dfrac{2\pi \,rad}{rev} \cdot \dfrac{1 \min}{60 \,sec} = \dfrac{683\pi}{3} \, \dfrac{rad}{sec}$

$r = \left(4100g \, m/sec^2\right) \left(\dfrac{3}{683\pi} \, \dfrac{sec}{rad} \right)^2 \approx 0.0785 \, m$

$d = 2r \approx 0.157 \, m > 0.127 \, m$

seems their "claim" is false ...
 


$\dfrac{6830 \, rev}{min} \cdot \dfrac{2\pi \,rad}{rev} \cdot \dfrac{1 \min}{60 \,sec} = \dfrac{683\pi}{3} \, \dfrac{rad}{sec}$

where do you get

$$\dfrac{683\pi}{3}$$
 
Last edited:
$\dfrac{6830}{1} \cdot \dfrac{2\pi}{1} \cdot \dfrac{1}{60} = \dfrac{6830 \cdot 2\pi}{60} = \dfrac{6830 \cdot \pi}{30} = \dfrac{683 \cdot \pi}{3}$
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 5 ·
Replies
5
Views
11K
  • · Replies 111 ·
4
Replies
111
Views
24K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
2
Views
5K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 48 ·
2
Replies
48
Views
12K
Replies
4
Views
4K
  • · Replies 12 ·
Replies
12
Views
5K
Replies
2
Views
3K