90% done with this evenly dstrbtd chrg on infinite line problem. PLEASE help 10%

  • Thread starter Thread starter twisted079
  • Start date Start date
  • Tags Tags
    Infinite Line
AI Thread Summary
The discussion focuses on solving the electric field problem created by a continuous line of charge extending from a point on the x-axis to infinity. The user is confused about the integration process and the correct application of variables, particularly regarding the linear charge density λ0 and the limits of integration. Clarifications indicate that the variable "L" is unnecessary, and the correct expression for charge should be dq = λ0 dx. The user is guided to integrate from x0 to infinity, leading to the final expression for the electric field's magnitude, which points in the negative x-direction. The conversation emphasizes understanding the relationship between charge density and the variables involved in the integration.
twisted079
Messages
25
Reaction score
1
90% done with this "evenly dstrbtd chrg on infinite line" problem. PLEASE help 10%

Homework Statement


A continuous line of charge lies along the x-axis, extending from x=+x0 to positive infinity. The line carries positive charge with a uniform linear charge density λ0.
What is the magnitude of the electric field at the origin? (Use λ0, x0 and ke as necessary.)



Homework Equations



1) dE = (kedq) / r2
2) dq = λdx = (Q/L)dx

The Attempt at a Solution



I used the prior equations to set up: dE = (keQ / L) * dx/x2
Now time to integrate, but first a few questions. I understand "L" is the length of the entire rod? But so is x? Am I using L and x the right way or should I put everything in terms of x? Second, what are the constants that I pull out of the integral? Since its to infinity, doesn't "L" (or x?) change, meaning I can't pull out the L? I understand ke and Q are constant so I pull them out, is that all? Also I am integrating from 0 to infinity correct? Depending on what the set integral is, I understand that there is a possibility that when I integrate, infinity might be a denominator, making that part go to 0? I am kind of confused, any help would be GREATLY appreciated!
 
Physics news on Phys.org


x is not the length. It's just a general position along the x-axis.

You don't need L. The answer should have λ0 in it dq = λ0 dx .

You're about 50% done, at best.
 
Last edited:


But λ = Q/L, or in this case would it be Q/x?

Edit: What about the constants that I could pull out of the integral?
 


Ok, so this is my idea of what the solution would look like:

(keQ) / L 0infinity dx/x2

---> 1/x2 dx becomes -(1/x) which puzzles me because this leads to no solution except keQ/L (L or x) ... Please help!
 


Maybe I wasn't clear. Wherever you have Q/L, use λ0 instead.

If you had such a line of charge, then if you cut a length, L, of that line and measured the amount of charge, Q, for that length, L, you would find the ratio of charge to length to be λ0 .

In other words, Q/L = λ0 , anywhere on the line.
 


Here is what I have come up with so far:

dq = λdx
dE = keλdx / x2
E = keλ 0 dx/x2
E = keλ(-1/x) from 0 to ∞

Now, when I plus 0 in, I run into a problem
 


The integral should go from x0 to ∞ .
 


So I would have

E = keλ(-1/x0 - 0) --> -(keλ / x0) ?
 


Yes, Except you're finding the magnitude. Drop the "-" sign .

I edited this post, but you must have seen it before I made the changes.
 
  • #10


Ah okay, and the direction would be in the negative x-axis. Thank you so much for your help!
 
  • #11


twisted079 said:
Ah okay, and the direction would be in the negative x-axis. Thank you so much for your help!
Yes. Your previous answer is almost correct.
 
Back
Top