Adorno
- 29
- 0
Homework Statement
I have the following expressions for angular momentum components: L_1 = x_2\frac{\partial}{\partial x_3} - x_3\frac{\partial}{\partial x_2}, L_2 = x_3\frac{\partial}{\partial x_1} - x_1\frac{\partial}{\partial x_3}, L_3 = x_1\frac{\partial}{\partial x_2} - x_2\frac{\partial}{\partial x_1}, and I simply need to work out L^2 = L_1^2 + L_2^2 + L_3^2.
Homework Equations
N/A
The Attempt at a Solution
Well, the way I expand it gives L_1^2 = (x_2\frac{\partial}{\partial x_3} - x_3\frac{\partial}{\partial x_2})(x_2\frac{\partial}{\partial x_3} - x_3\frac{\partial}{\partial x_2}) = x_2\frac{\partial}{\partial x_3}x_2\frac{\partial}{\partial x_3} - x_2\frac{\partial}{\partial x_3}x_3\frac{\partial}{\partial x_2} - x_3\frac{\partial}{\partial x_2}x_2\frac{\partial}{\partial x_3} + x_3\frac{\partial}{\partial x_2}x_3\frac{\partial}{\partial x_2} = -x_2\frac{\partial}{\partial x_2} - x_3\frac{\partial}{\partial x_3}, and similarly L_2^2 = -x_1\frac{\partial}{\partial x_1} - x_3\frac{\partial}{\partial x_3} and L_3^2 = -x_1\frac{\partial}{\partial x_1} - x_2\frac{\partial}{\partial x_2}, so that L^2 = -2x_1\frac{\partial}{\partial x_1} - 2x_2\frac{\partial}{\partial x_2} - 2x_3\frac{\partial}{\partial x_3} But this is not the expression for L^2 that I'm supposed to get! So I must be doing something wrong. Can anyone help?